Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract: Colloidal all‐inorganic lead halide perovskite quantum dots (QDs) are high‐performance light‐emitting materials with size‐dependent optical properties and can be readily synthesized by mixing ionic precursors. However, the low formation energy of the perovskite lattice makes their growth too fast to control under regular reaction conditions. Diffusion‐regulated CsPbBr3 perovskite QD growth is reported on a nanometer‐sized liquid/liquid (L/L) interface supported in a micropipette tip without long‐chain organic ligands. The precursors are divided into two immiscible solutions across the L/L interface to avoid additional nucleation, and the QD growth kinetics are regulated by the constrained cationic diffusion field depending on the size of the micropipette tip. QDs with unprecedentedly small sizes (2.7 nm) are obtained due to the slowed‐down growth rates. The synthesis approach demonstrates the potential of micro‐controlled colloidal QD synthesis for mechanistic studies and micro‐fabrications.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Perovskite quantum dots (QDs) have efficient optical absorption and emission in the visible range, and show a strong quantum confinement effect and high external quantum efficiency. They have been at the forefront of next‐generation photovoltaics and optoelectronics applications. However, two major challenges associated with perovskites and their nanomaterials are poor stability (such as against moisture and polar solvents), as well as the lack of efficient nanopatterning methods. In this work, a promising approach is provided to address both of those major challenges by molecular engineering and integration of QDs with block copolymers (BCP). The BCP thermoplastic elastomers not only substantially improve the stability of perovskite QDs by encapsulating them in a highly stable and soft matrix, but also enable molecular‐level control of the alignment and assembly of perovskite QDs in the microphase‐separated BCP matrix. It is demonstrated that designing and synthesis of compatible polymer ligands for perovskite QDs is key to enabling their selective and strong interaction with the BCP matrix. The structure and molecular weight of the BCP also play an important role in the interfacial structure and optical properties of the QDs‐BCP nanocomposites. Such soft and flexible optical nanocomposites have potential applications in flexible optoelectronics, optical storage, and displays.more » « less
An official website of the United States government
